Part Number Hot Search : 
PIC18F8 Z100E 167BZI IDTQS PCD5013 MAX912 MMBD352 IDTQS
Product Description
Full Text Search
 

To Download X24C45 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
X24C45
256 Bit, 16 x 16 Bit
Data Sheet June 1, 2005 FN8104.0
Serial AUTOSTORETM NOVRAM
FEATURES * AUTOSTORE NOVRAM --Automatically performs a store operation upon loss of VCC * Single 5V supply * Ideal for use with single chip microcomputers --Minimum I/O interface --Serial port compatible (COPSTM, 8051) --Easily interfaced to microcontroller ports * Software and hardware control of nonvolatile functions * Auto recall on power-up * TTL and CMOS compatible * Low power dissipation --Active current: 10mA --Standby current: 50A * 8-lead PDIP and 8-lead SOIC packages * High reliability --Store cycles: 1,000,000 --data retention: 100 years IBLOCK DIAGRAM
DESCRIPTION The Intersil X24C45 is a serial 256-bit NOVRAM featuring a static RAM configured 16 x 16, overlaid bit-by-bit with a nonvolatile EEPROM array. The X24C45 is fabricated with Intersil's Advanced CMOS Floating Gate technology. The Intersil NOVRAM design allows data to be transferred between the two memory arrays by means of software commands or external hardware inputs. A store operation (RAM data to EEPROM) is completed in 5ms or less and a recall operation (EEPROM data to RAM) is completed in 2s or less. The X24C45 also includes the AUTOSTORE feature, a user selectable feature that automatically performs a store operation when VCC falls below a preset threshold. Intersil NOVRAMs are designed for unlimited write operations to RAM, either from the host or recalls from EEPROM and a minimum 1,000,000 store operations. Inherent data retention is specified to be greater than 100 years.
Nonvolatile EEPROM
E ST
Row Decode
Static RAM 256-Bit
AL
L
O
R
Control Logic
RECALL (6) AS (7)
CE (1) DI (3) SK (2)
Instruction Register
Column Decode
R
EC
DO (4)
Instruction Decode
4-Bit Counter
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners.
X24C45
PIN DESCRIPTIONS Chip Enable (CE) The Chip Enable input must be HIGH to enable all read/write operations. CE must remain HIGH following a Read or Write command until the data transfer is complete. CE LOW places the X24C45 in the low power standby mode and resets the instruction register. Therefore, CE must be brought LOW after the completion of an operation in order to reset the instruction register in preparation for the next command. Serial Clock (SK) The Serial Clock input is used to clock all data into and out of the device. Data In (DI) Data In is the serial data input. Data Out (DO) Data Out is the serial data output. It is in the high impedance state except during data output cycles in response to a READ instruction. AUTOSTORE Output (AS) AS is an open drain output which, when asserted indicates VCC has fallen below the AUTOSTORE threshold (VASTH). AS may be wire-ORed with multiple open drain outputs and used as an interrupt input to a microcontroller or as an input to a low power reset circuit. RECALL RECALL LOW will initiate an internal transfer of data from EEPROM to the RAM array.
DIP/SOIC CE SK DI DO 1 2 3 4 X24C45 8 7 6 5 VCC AS RECALL VSS
PIN CONFIGURATION
PIN NAMES Symbol
CE SK DI DO RECALL AS VCC VSS
Description
Chip Enable Serial Clock Serial Data In Serial Data Out Recall Input AUTOSTORE Oput +5V Ground
2
FN8104.0 June 1, 2005
X24C45
DEVICE OPERATION The X24C45 contains an 8-bit instruction register. It is accessed via the DI input, with data being clocked in on the rising edge of SK. CE must be HIGH during the entire data transfer operation. Table 1. contains a list of the instructions and their operation codes. The most significant bit (MSB) of all instructions is a logic one (HIGH), bits 6 through 3 are either RAM address bits (A) or don't cares (X) and bits 2 through 0 are the operation codes. The X24C45 requires the instruction to be shifted in with the MSB first. After CE is HIGH, the X24C45 will not begin to interpret the data stream until a logic "1" has been shifted in on DI. Therefore, CE may be brought HIGH with SK running and DI LOW. DI must then go HIGH to indicate the start condition of an instruction before the X24C45 will begin any action. In addition, the SK clock is totally static. The user can completely stop the clock and data shifting will be stopped. Restarting the clock will resume shifting of data. RCL and RECALL Either a software RCL instruction or a LOW on the RECALL input will initiate a transfer of EEPROM data into RAM. This software or hardware recall operation sets an internal "previous recall" latch. This latch is reset upon power-up and must be intentionally set by the user to enable any write or store operations. Although a recall operation is performed upon powerup, the previous recall latch is not set by this operation. WRDS and WREN Internally the X24C45 contains a "write enable" latch. This latch must be set for either writes to the RAM or store operations to the EEPROM. The WREN instruction sets the latch and the WRDS instruction resets the latch, disabling both RAM writes and EEPROM stores, effectively protecting the nonvolatile data from corruption. The write enable latch is automatically reset on power-up. STO The software STO instruction will initiate a transfer of data from RAM to EEPROM. In order to safeguard against unwanted store operations, the following conditions must be true: - STO instruction issued. - The internal "write enable" latch must be set (WREN instruction issued). - The "previous recall" latch must be set (either a software or hardware recall operation). Once the store cycle is initiated, all other device functions are inhibited. Upon completion of the store cycle, the write enable latch is reset. Refer to Figure 4 for a state diagram description of enabling/disabling conditions for store operations.
Table 1. Instruction Set Instruction
WRDS (Figure 3) STO (Figure 3) ENAS WRITE (Figure 2) WREN (Figure 3) RCL (Figure 3) READ (Figure 1)
Format, I2 I1 I0
1XXXX000 1XXXX001 1XXXX010 1AAAA011 1XXXX100 1XXXX101 1AAAA11X
Operation
Reset Write Enable Latch (Disables Writes and Stores) STORE RAM Data in EEPROM Enable AUTOSTORE Feature Write Data into RAM Address AAAA Set Write Enable Latch (Enables Writes and Stores) Recall EEPROM Data into RAM Read Data from RAM Address AAAA
3
FN8104.0 June 1, 2005
X24C45
WRITE The WRITE instruction contains the 4-bit address of the word to be written. The write instruction is immediately followed by the 16-bit word to be written. CE must remain HIGH during the entire operation. CE must go LOW before the next rising edge of SK. If CE is brought LOW prematurely (after the instruction but before 16 bits of data are transferred), the instruction register will be reset and the data that was shifted-in will be written to RAM. If CE is kept HIGH for more than 24 SK clock cycles (8-bit instruction plus 16-bit data), the data already shifted-in will be overwritten. READ The READ instruction contains the 4-bit address of the word to be accessed. Unlike the other six instructions, I0 of the instruction word is a "don't care". This provides two advantages. In a design that ties both DI and DO together, the absence of an eighth bit in the instruction allows the host time to convert an I/O line from an output to an input. Secondly, it allows for valid data output during the ninth SK clock cycle. D0, the first bit output during a read operation, is truncated. That is, it is internally clocked by the falling edge of the eighth SK clock; whereas, all succeeding bits are clocked by the rising edge of SK (refer to Read Cycle Diagram). LOW POWER MODE When CE is LOW, non-critical internal devices are powered-down, placing the device in the standby power mode, thereby minimizing power consumption. AUTOSTORE Feature The AUTOSTORE instruction (ENAS) sets the "AUTOSTORE enable" latch, allowing the X24C45 to automatically perform a store operation when VCC falls below the AUTOSTORE threshold (VASTH).
Notes: X = Don't Care A = Address
WRITE PROTECTION The X24C45 provides two software write protection mechanisms to prevent inadvertent stores of unknown data. Power-Up Condition Upon power-up the "write enable" and "AUTOSTORE enable" latches are in the reset state, disabling any store operation. Unknown Data Store The "previous recall" latch must be set after power-up. It may be set only by performing a software or hardware recall operation, which assures that data in all RAM locations is valid. SYSTEM CONSIDERATIONS Power-Up Recall The X24C45 performs a power-up recall that transfers the EEPROM contents to the RAM array. Although the data may be read from the RAM array, this recall does not set the "previous recall" latch. During this powerup recall operation, all commands are ignored. Therefore, the host should delay any operations with the X24C45 a minimum of tPUR after VCC is stable.
4
FN8104.0 June 1, 2005
X24C45
Figure 1. RAM Read
CE
SK
1
2
3
4
5
6
7
8
9
10
11
12
22
23
24
DI
1
A
A
A
A
1
1
X*
HIGH Z DO *Bit 8 of Read Instructions is Don't Care D0 D1 D2 D3 D13 D14 D15 D0
Figure 2. RAM Write
CE
SK
1
2
3
4
5
6
7
8
9
10
11
21
22
23
24
DI
1
A
A
A
A
0
1
1
D0
D1
D2
D12
D13
D14
D15
Figure 3. Non-Data Operations
CE
SK
1
2
3
4
5
6
7
8
DI
1
X
X
X
X
I2
I1
I0
5
FN8104.0 June 1, 2005
X24C45
Figure 4. FX24C45 State Diagram
Power On
Power-Up Recall Power OFF RAM Read Enabled RAM Read
RCL Command Or Recall AUTOSTORE Power-down STO Or Wrds Cmd RAM Read Enabled RAM Read
RAM Read Or Write
RAM Read & Write Enabled Store Enabled AUTOSTORE Enabled
STO Or Wrds Cmd RAM Read & Write Enabled Store Enabled
WREN Command
ENAS Command
RAM Read Or Write
WREN Command
6
FN8104.0 June 1, 2005
X24C45
ABSOLUTE MAXIMUM RATINGS Temperature under bias .................... -65C to +135C Storage temperature ......................... -65C to +150C Voltage on any pin with respect to VSS .................................. -1V to +7V D.C. output current ............................................... 5mA Lead temperature (soldering, 10 seconds) ........ 300C COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; the functional operation of the device (at these or any other conditions above those indicated in the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS Temperature
Commercial Industrial Military
Min.
0C -40C -55C
Max.
+70C +85C +125C
Supply Voltage
X24C45
Limits
5V 10%
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.) Limits Symbol
lCC1 lCC2 ISB1 ISB2 ILI ILO VlL(1) VIH(1) VOL VOH VOL(AS)
Parameter
VCC supply current (TTL inputs) VCC supply current (during AUTOSTORE) VCC standby current (TTL inputs) VCC standby current (CMOS inputs) Input load current Output leakage current Input LOW voltage Input HIGH voltage Output LOW voltage Output HIGH voltage Output LOW voltage (AS)
Min.
Max.
10 2 1 50 10 10
Unit
mA mA mA A A A V V V V V
Test Conditions
SK = 0.4V/2.4V Levels @ 1MHz, DO = open, All other inputs = VIH All inputs = VIH, CE = VIL DO = open, VCC = 4.3V DO = Open, CE = VIL, All other inputs = VIH DO = Open, CE = VSS, All other inputs = VCC - 0.3V VIN = VSS to VCC VOUT = VSS to VCC
-1 2 2.4
0.8 VCC + 1 0.4 0.4
IOL = 4.2mA IOH = -2mA IOL(AS) = 1mA
ENDURANCE AND DATA RETENTION Parameter
Endurance Store cycles Data retention
Min.
100,000 1,000,000 100
Unit
Data changes per bit Store cycles Years
CAPACITANCE TA = +25C, f = 1MHz, VCC = 5V Symbol
COUT(2) CIN(2)
Parameter
Output capacitance Input capacitance
Max.
8 6
Unit
pF pF
Test Conditions
VOUT = 0V VIN = 0V
Notes: (1) VIL min. and VIH max. are for reference only and are not tested. (2) This parameter is periodically sampled and not 100% tested.
7
FN8104.0 June 1, 2005
X24C45
EQUIVALENT A.C. LOAD CIRCUIT
5V
A.C. CONDITIONS OF TEST
Input pulse levels Input rise and fall times Input and output timing levels 0V to 3V 10ns 1.5V
919 Output 497 100pF
A.C. CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.) Read and Write Cycle Limits Symbol
FSK(3) tSKH tSKL tDS tDH tPD1 tPD tZ tCES tCEH tCDS SK frequency SK positive pulse width SK negative pulse width Data setup time Data hold time SK to data bit 0 valid SK to data valid Chip enable to output high Z Chip enable setup Chip enable hold Chip deselect 800 350 800 400 400 400 80 375 375 1
Parameter
Min.
Max.
1
Unit
MHz ns ns ns ns ns ns s ns ns ns
POWER-UP TIMING Symbol
tPUR
(4) (4)
Parameter
Power-up to read operation Power-up to write or store operation
Max.
200 5
Unit
s ms
tPUW
Notes: (3) SK rise and fall times must be less than 50ns. (4) tPUR and tPUW are the delays required from the time VCC is stable until the specified operation can be initiated. These parameters are periodically sampled and not 100% tested.
8
FN8104.0 June 1, 2005
X24C45
Write Cycle
1/F SK SK CYCLE # SK x tCES CE tDS DI tDH tSKH 1 tSKL 2 n tCEH tCDS
Read Cycle
SK CYCLE # 6 SK 7 8 9 10 n
VIH CE tPD
DI
I2
I1
DON'T CARE tPD1 High Z tZ D0 D1 Dn High Z
DO
9
FN8104.0 June 1, 2005
X24C45
NONVOLATILE OPERATIONS Operation
Hardware recall Software recall Software store
RECALL
0 1 1
Software Instruction
NOP(5) RCL STO
Write Enable Latch State
X X SET
Previous Recall Latch State
X X SET
ARRAY RECALL LIMITS Symbol
tRCC tRCP tRCZ Recall cycle time Recall pulse width(6) Recall to output in high Z
Parameter
Min.
2 500
Max.
Unit
s ns
500
ns
Recall Timing
tRCC tRCP RECALL tRCZ DO High Z
SOFTWARE STORE CYCLE LIMITS Symbol
tST
Parameter
Store time after clock 8 of STO command
Min.
Typ.(7)
2
Max.
5
Unit
ms
Notes: (5) NOP designates when the X24C45 is not currently executing an instruction. (6) RECALL rise time must be <10s. (7) Typical values are for TA = 25C and nominal supply voltage.
10
FN8104.0 June 1, 2005
X24C45
AUTOSTORE CYCLE LIMITS Symbol
tASTO VASTH VASEND
Parameter
AUTOSTORE cycle time AUTOSTORE threshold voltage AUTOSTORE cycle end voltage
Min.
4.0 3.5
Max.
5 4.3
Unit
ms V V
AUTOSTORE Cycle Timing Diagrams
5 4 Volts (V) 3 2
VCC AUTOSTORE Cycle in Progress VASTH VASEND
tASTO 1 Store Time Time (ms)
VCC VASTH 0V tPUR tPUR
tASTO
AS
SYMBOL TABLE
WAVEFORM INPUTS Must be steady May change from LOW to HIGH May change from HIGH to LOW Don't Care: Changes Allowed N/A OUTPUTS Will be steady Will change from LOW to HIGH Will change from HIGH to LOW Changing: State Not Known Center Line is High Impedance
11
FN8104.0 June 1, 2005
X24C45
Ordering Information X24C45 P T -V VCC Limits Blank = 5V 10% Device Temperature Range Blank = Commercial = 0C to +70C I = Industrial = -40C to +85C M = Military = -55C to +125C
Package P = 8-Lead Plastic DIP S = 8-Lead SOIC
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com 12
FN8104.0 June 1, 2005


▲Up To Search▲   

 
Price & Availability of X24C45

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X